COVID-19: What Transplant Patients Need to Know

April 17 - 23, 2021

Erica Stohs MD, MPH
University of Nebraska Medical Center

Hannah Imlay MD, MS
University of Utah

Celebrating a Second Chance at Life Survivorship Symposium
Disclosures

Erica Stohs:
• Site investigator for Novavax COVID-19 vaccine trial

Hannah Imlay:
• Site investigator on trials for remdesivir (Gilead)

Outline

• COVID-19 Overview
• How COVID-19 spreads
• Symptoms and Treatment
• Prevention
 • Masks
 • Variants
 • Vaccines
What is COVID-19?

- Respiratory virus SARS-CoV-2
- More contagious than influenza
- Symptoms can be mild to severe
- Onset occurs 2-14 days after exposure
- Affects adults more than children
- Those with underlying medical conditions are at higher risk of serious complications

COVID-19 in Cancer

- Having cancer
 - Increased risk for severe illness
 - Increased need for hospitalization, ICU care and death
 - Depends on age & other medical conditions
- Cancer in remission
 - Unclear if it changes risk for severe illness
 - Depends on underlying immune compromise, age and comorbidities
Early Studies of COVID-19 and Cancer

- Blood cancers (acute leukemia or non-Hodgkin lymphoma) have higher risk for severe illness compared to solid cancers
- Immunotherapy, hormonal therapy or radiotherapy did not change risk for severe illness
- Chemotherapy within 1 month of COVID-19 showed mixed results
 - Routine COVID-19 testing before chemotherapy is common

Symptoms of COVID-19

- Fever or chills
- Cough
- Shortness of breath
- Difficulty breathing
- New loss of smell
- Headache
- Sore throat
- Vomiting or diarrhea
- Muscle aches

Emergency Warning Signs:
- Trouble breathing
- Turning blue, grey or pale
- Persistent chest pain or pressure
- New confusion
- Trouble waking/staying awake

Seek medical care immediately!
A bad case of COVID-19

Asymptomatic/Presymptomatic
- Mild/Moderate:
 - Fevers
 - Chills
 - Cough
 - Change in taste/smell

Mild/Moderate:
- Fevers
- Chills
- Cough
- Change in taste/smell

Severe:
- Pneumonia
- Shortness of breath
- Need oxygen

Severe:
- Pneumonia
- Shortness of breath
- Need oxygen

Critical Illness:
- Need for life support

Can COVID-19 be treated?

<table>
<thead>
<tr>
<th>Widely used therapies:</th>
<th>How?</th>
<th>When might it help?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal antibodies</td>
<td></td>
<td>Early, before hospitalization</td>
</tr>
<tr>
<td>- Regeneron: casirivimab + imdevimab</td>
<td></td>
<td>?Prevention after exposure</td>
</tr>
<tr>
<td>- Eli Lilly: bamlanivimab + etesevimab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remdesivir</td>
<td>Blocks RNA</td>
<td>Early in severe disease</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Blocks inflammation</td>
<td>Severe disease</td>
</tr>
</tbody>
</table>

- Some things used in very select scenarios: convalescent plasma, baricitinib, tocilizumab
- Many things that have not yet shown benefit: hydroxychloroquine, lopinavir, ivermectin, vitamin D, azithromycin, etc.
A bad case of COVID-19

Asymptomatic/Presymptomatic Mild/Moderate Severe Critical Illness

Virus replicating Inflammation

Monoclonal Antibody Remdesivir Dexamethasone

Prevention is key

• Masking, distancing, handwashing, etc
• Vaccination
 • Multiple vaccines now available

How does the spread of variant SARS-CoV-2 change these strategies?
How COVID-19 spreads

• Close contact with someone who is infected
 • Breathe in respiratory droplets or aerosols
 • Touch droplets, then touch your nose, mouth or eyes
• Poor ventilation
• Crowds

What are novel variants?

• Mutations of the virus occur gradually
• “Variant of concern”

<table>
<thead>
<tr>
<th>Variant</th>
<th>Reported Cases in the US (April 15, 2021)</th>
<th>Number of Jurisdictions Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1.7</td>
<td>20915</td>
<td>52</td>
</tr>
<tr>
<td>B.1.351</td>
<td>453</td>
<td>36</td>
</tr>
<tr>
<td>P.1</td>
<td>497</td>
<td>31</td>
</tr>
</tbody>
</table>
How to prevent transmission

WEAR A MASK STAY 6 FEET APART AVOID CROWDS WASH HANDS VACCINATION

When to use masks

- In public
- When traveling

- Visitors
- Someone at home has or could be sick with COVID-19
Which mask is best?

Fit and Filtration
- Should cover nose & mouth
- Fit snugly against the sides of the face without gaps
- Nose wire can improve fit
- Double masking can improve fit & filtration
- No valves

Goals of a vaccine
- Train immune system to recognize parts of a virus
 - Bonus points if it’s a part of a virus crucial for the virus replicating
Current COVID-19 vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Authorized in the US?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer BioNTech</td>
<td>mRNA</td>
<td>Yes</td>
</tr>
<tr>
<td>Moderna</td>
<td>mRNA</td>
<td>Yes</td>
</tr>
<tr>
<td>Johnson+Johnson</td>
<td>Adenovirus vector</td>
<td>Yes</td>
</tr>
<tr>
<td>Astra Zeneca</td>
<td>Adenovirus vector</td>
<td>Not yet</td>
</tr>
<tr>
<td>Novavax</td>
<td>Protein subunit</td>
<td>Not yet</td>
</tr>
</tbody>
</table>

mRNA vaccines

- mRNA = messenger RNA
 - This is usually what our DNA makes as the first step in making protein
 - Like an email telling your cells how to make spike protein

- Vaccine made up of:
 - mRNA
 - Surrounded by an oily coating
1. Vaccine fuses with a cell

2. mRNA goes into cell

3. Cell machinery makes spike proteins, which combine to form spike

4. Spike is displayed on the outside of the cell

Can the vaccine integrate into my DNA?

Vaccinated Cell

B CELL

ACTIVATED KILLER T CELL

HELPER T CELL
Trains the immune system

Makes antibodies

Kills cells infected with SARS-CoV-2

Adenovirus vector vaccines

- DNA encoding for SARS-CoV-2 spike protein, packaged inside an Adenovirus
- The Adenovirus is not infectious—it can only inject spike protein DNA, not infect a cell or make more Adenovirus
1. Cell engulfs the Adenovirus

2. DNA injected into the nucleus, where the cell makes it into mRNA

3. mRNA leaves the nucleus. Cell machinery makes spike proteins, which combine to form spike

4. Spike is displayed on the outside of the cell

Vaccinated Cell

B CELL

ACTIVATED KILLER T CELL

HELPER T CELL
Protein subunit vaccines

- Spike proteins connected together by a nanoparticle

How well do the vaccines do against COVID-19?

<table>
<thead>
<tr>
<th>Type</th>
<th>Doses</th>
<th>Prevents any COVID?</th>
<th>Prevents severe COVID?</th>
<th>Prevents mortality?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer BioNTech (16+)</td>
<td>mRNA 2</td>
<td>91%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Moderna (18+)</td>
<td>mRNA 2</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
</tr>
<tr>
<td>Johnson+Johnson (18+)</td>
<td>Adenovirus vector 1</td>
<td>67%<sup>a</sup></td>
<td>84%</td>
<td>100%</td>
</tr>
</tbody>
</table>

^a74% among patients in the United States

Is the J+J vaccine worse than the Pfizer or Moderna?
What about variants?

<table>
<thead>
<tr>
<th>Variant</th>
<th>Any vaccines tested against the strain?</th>
<th>How good was protection?</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1.7</td>
<td>Novavax, A-Z</td>
<td>Protection similar</td>
</tr>
<tr>
<td>B.1.351</td>
<td>Novavax, J+J, A-Z, Pfizer</td>
<td>Novavax: 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J+J: 64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Z: low efficacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pfizer: 100% but small</td>
</tr>
<tr>
<td>P.1</td>
<td>J+J</td>
<td>68%</td>
</tr>
</tbody>
</table>

Missing: Moderna

How well does vaccination work among stem cell recipients?

Very few patients on immunosuppression enrolled in any vaccine trials.

Potential concerns specific to stem cell recipients:

- Safety
- Efficacy
Safety:

- Theoretical risk of immune reactions
- Other side effects probably similar to the general population:
 - Headache
 - Muscle pain (myalgia)
 - Fevers/chills
- Long term side effects being tracked by CDC and FDA
 - Rare acute allergic reaction (anaphylaxis) identified as a possible side effect (2-5 cases per million)
 - J+J: 6 cases of blood clots → distribution on hold

Efficacy:

- Lower likelihood that patients with history of stem cell transplant will respond
- Patients with recent stem cell transplant, on GVHD meds, or on immunotherapy may need to delay until a better time
 - All patients with history of stem cell transplant should discuss with their transplant doctor
- Caregivers/family members should be immunized when they can be
- Can you tell whether I’ve responded to vaccine?

If I’ve already had COVID-19, I don’t need a vaccine, do I?
CDC: What can I do once I’m vaccinated?

You can:

• gather indoors with fully vaccinated people without a mask
• gather indoors with unvaccinated people from one other household without masks
 • UNLESS any of those people has increased risk of severe illness
• If you have been exposed to COVID-19 you don’t need to quarantine or get tested unless you are symptomatic
• Travel domestically

CDC: What should I do after vaccination?

After being vaccinated you still need to:

• Mask in public
• Mask or avoid multi-household gatherings

NCCN: What can I do once I’m vaccinated?

- “Data on efficacy of these vaccines in cancer patients remains unknown”
- Continued vigilance after vaccination:
 - Patients and close contacts should still wear masks
 - Maintain social distancing
 - Avoid crowds
 - Family circle should be vaccinated as early as possible
- More studies on vaccine efficacy, use of boosters, re-vaccination, are coming

Summary

- COVID-19 remains a major threat, especially among immunocompromised patients
- Can result in life-threatening respiratory infection
- Prevention is the key to control
- Masking, distancing are cornerstone
- Vaccination important
 - Efficacy unknown among immunocompromised patients, but likely lower than general population
 - Contacts should get vaccinated

Questions?

Celebrating a Second Chance at Life
Survivorship Symposium 2021

bmtinfonet.org ✦ help@bmtinfonet.org ✦ 847-433-3313